Hindsight Experience Replay in the Visual Domain
With Novel View Synthesis Networks

Eric Zhu'!, Mara Levy!, Abhinav Shrivastava'

Abstract— Learning from failed trajectories is a long standing
problem in reinforcement learning and robotics. Reinforcement
learning policies that fail to achieve a goal often do not learn
any meaningful information about how to achieve the goal from
these failed trajectories. This phenomenon results in inefficient
learning because the majority of the data training data are
failed demonstrations. To solve this problem, hindsight expe-
rience replay has been proposed. While hindsight experience
replay has been shown to be effective for vector-based state
representations of the environment, there has not been any work
on applying hindsight experience replay to the image domain.
In this paper, we bring the original hindsight experience replay
algorithm into the image domain by using NeRF-based editing
to effectively change the position of goal objects in an image.
Overall, we show that applying hindsight experience replay
increases the success rate of the reinforcement learning policies
by between 40% and 80% on 4 different tasks.

I. INTRODUCTION

Humans have an innate ability to understand why the
actions they took failed at achieving a task. A human can
often list the reasons that the approach failed and imagine a
scenario in which they succeeded. Even little children exhibit
this ability to explain why they could not do basic tasks
such as holding a toy correctly or why a object slipped from
their hand. This is in stark contrast to existing reinforcement
learning models which are often incapable of explaining why
their actions fails. This lack of "hindsight" leads to significant
overhead in training a reinforcement learning model because
the policy does not learn new information from previous
failed attempts to solve the task.

In typical reinforcement learning, for most of training,
the memory buffer is filled with many failed executions
compared to a relatively small number of (if any) successful
ones. Such a scenario is suboptimal because there is not
much successful data to learn from, leading to significantly
longer training time and environment steps required to create
a successful policy. Such a problem is exacerbated in sparse
reward settings where a policy gets a flat reward signal until
it has by chance successfully completed the task, if ever.

To solve this issue, hindsight experience replay (HER) has
been proposed. Hindsight experience reply is a method that
takes a trajectory that failed to achieve its goal and creates
a new trajectory that did successful reach its goal. By doing
so, HER effectively creates a new synthetic successfully
trajectory from failed trajectories.

HER has been proven to be effective in a multitude of
cases. [1] showed that the original hindsight experience
algorithm was capable of training a policy to (1) reach a point

!University of Maryland, College Park

Failed At Pushing
Blue Cube Toward
Red Ball

X

A - ™ n

-
’

| - | it

bid

Hindsight
Relabelling

|11
v v v y

|] i’
. LY
= |

Fig. 1. An overview of how our method is able to change the positions
of objects around in a scene. We relabel a trajectory taken by the policy in
order to get a new successful trajectory even if the original trajectory was
a failure.

Successful Hindsight
Trajectory

v/

& L n
|.:r-r"‘1

in mid-air, (2) push a puck to a correct position, (3) slide a
puck to a target position, and (4) pick up and move a block
to a new position. However, hindsight experience replay has
only been applied to vector representations of states, where
policy has access to gripper and object positions and a goal
of the form (x, y, z). Such representations are highly limited
because it requires the ground truth position of all the objects
in a scene to execute a task, which is unfeasible at test time.

In this paper, we propose a pipeline to apply HER to the
image domain. We leverage novel view-synthesis methods
to edit images to convert failed trajectories into synthetic
trajectories that succeeded. Our contributions are as follows:

. We learn a NeRF or other novel view synthesis model
on a target object.

. We provide a simple but effective pipeline to allow
agents to imagine objects in different places.

- We use this pipeline to convert failed trajectories into
successful trajectories by changing the location of ob-
jects in a scene in the same way as the original hindsight
experience replay paper.

- We demonstrate our method’s effectiveness on multiple
environments from drone navigation to robot arm ma-
nipulation.

II. RELATED WORKS

A. Novel View Synthesis

Novel view synthesis methods are models that are capable
of rendering a scene or object from a point of view not
present in the dataset. Over the past few years, novel view
synthesis methods have improved immensely in both speed

and photorealism. The first novel view synthesis method was
the neural radiance field (NeRF)[2], which estimates the rgba
value of each position in space and then performs ray tracing
to render images. Many modifications have been proposed to
NeRF. These include methods that significantly improving
the speed of NeRF rendering, proposed by [3? —6]. Others
methods have explored diffusion-guided NeRF training from
a single viewpoint [7], hardening NeRF models to noise
[8], creating NeRF models that capable of reflections [9],
and dynamic NeRf models for capturing a 3D scene where
objects are moving.[10].

Instead of using a mlp for predicting rgba values, other
novel view synthesis methods use other trainable structures.
[11] replaces the traditional mlp with a trainable octree,
which provides both faster training and inference time than a
NeRF model. Similarly , [12] uses a 3D voxel grid structure
with trainable cubes to render the rgba values of an image.

Recently, gaussian splatting [13] has gained popoularity as
an alternative to NeRF models for its higher image quality
and faster render time. Gaussian splatting has been used for
dynamic scenes [14], 3D segmentation [15, 16], and scene
editing [16].

B. Novel View Synthesis in Robotics

Novel View Synthesis has gained a following in robotics
due to their strong 3D consistency and photorealism. To
bridge the sim-to-real gap, both NeRFs and Gaussian Splats
have been proposed to accurately render a real object’s
texture on top of a simulator to thereby create photoreal-
istic images in simulation [17-19]. Other methods leverage
NeRF’s ability to estimate the transparency of an object
in order to create an accurate and complete depth map
for grasp pose estimation [20, 21]. For data augentation,
NeRF models have been used to create synthetic data for
a policy to train on [22, 23]. NeRF models have been
effective in estimating the 6-dof position/orientation of a
target object, as shown in [24-26]. Linguistically-augmented
novel view synthesis methods for both manipulation [27, 28]
and navigation [29] have also been proposed. Finally, novel
view synthesis has been combined with slam algorithms for
efficient and photorealistic reconstruction [30, 31].

C. Replay Buffers and Hindsight Experience

There have been many variations of the original hindsight
experience replay algorithm [1] that either modify the tra-
jectories or change the priority of transitions sampled from
the replay buffer. In [32], the authors propose to change the
priority of the transitions in the replay buffers by sampling
for values with a higher TD error. Other approaches combine
hindsight with model-based reinforcement learning by using
the model to generate a new trajectory and rewrite the goal
of said trajectory [33]. The authors of [34] take an unoptimal
trajectories and perform a graph search to find a more effi-
cient trajectory. Other approaches leverage diffusion models
to upsample data in a replay buffer [35, 36]. Realizing that
trajectories often result in survivor bias where trajectories
that the policy runs more often have a larger density of

successful synthetic trajectories, [37] unbias the sampling of
a hindsight replay buffer. Other approaches change the task
of an executed trajectory if it is not the target task [38].

III. PRELIMINARIES

Reinforcement learning. In the reinforcement learning
paradigm, a policy continuously interacts with the environ-
ment in order to gain data to train on. Each time the policy
interacts with the environment, it receives a reward value,
and the policy’s goal is to optimize the total reward that it
receives.

Formally, we model the reinforcement learning policy as a
markov decision process defined by M = (S, A, P, R, py. 7).
S is the set of states of the environment, A is the set of
actions, P is a probabilistic transition function from a state-
action tuple to a new state, R is the reward function mapping
a state-action tuple to a reward, and y is the decay factor.
A trajectory is defined as 7 = {(sk,ak,rk,skﬂ)}zzo. The
goal of the policy is to optimize the sum of decayed rewards
denoted by Y °0 ¥ R(s;, a;).

In goal-conditioned reinforcement learning, we add a
goal element g, € S for a trajectory of the form 7 =
{(sk, a, g skH,gk)}Z:l. A trajectory is deemed successful
if 5, = g,. Moreover, g, typically stays the same for the
entire trajectory.

Hindsight Experience Replay. Hindsight experience re-
play is a way of modifying trajectories in goal con-
ditioned reinforcement learning. For a trajectory 7z =
{(sk,ak,rk,sk+1,gk)}zzl, we change all the goal values g,
to be the final end state s,. Hindsight experience replay also
assumes enough knowledge of the reward function to rewrite
the reward to be accurate with the new goal. The result is
the trajectory

12 n
T = {(Sks aka R(Sk, ak’ gk)’ Sk+1, Sn)}k=]

Optionally, hindsight experience replay may modify only
subtrajectories rather than an entire trajectory. These new
successful trajectories are then added to the replay buffer of
the reinforcement learning policy.

Novel View Synthesis. The basic assumption of novel
view synthesis access to a dataset of image-camera position
pairs D = {({, T)}szl. This dataset can be of a scene (scene-
level) or an object (object-level). A model learns from this
dataset and renders an image of the scene/object at a new
camera pose. Some prominent novel view synthesis models
include gaussian splats, neural radiance fields, and plenoxels.
We choose to use plenoxels due to its ease of use, real-time
render speed, and robustness to many different viewpoints,
although any of the aforementioned methods would work
with our pipeline.

IV. OUR APPROACH

Our key observation is that the goal in many environments
is an object that a robot either navigates towards or interacts
with. In this way, an environment with images is implicitly a
goal conditioned reinforcement learning problem where the
object is the goal. Therefore, we propose a pipeline where we

Retrieve Image

Segment Original
Object

Trained Novel View
Synthesis Model

Fig. 2.

Combine
Together

Erase Original
Object

= =

Render In New
Position

O

Our method for rewriting the position of an object in a trajectory. We show the accuracy of our method on the "Navigate Drone" task. By

leveraging a NeRF or similar model to synthesize the object in a new position. We observe that our method is extremely photorealistic, allowing for
synthetic trajectories to be indistinguishable from true trajectories. Images are from our "Navigate Drone" environment.

use the final end state of the robot to rewrite the a trajectory
in the same fashion as the original hindsight experience
replay. We breakdown our method into 5 steps as seen in
fig 2 and listed below:

- We learn an object-level model that is capable of syn-
thesizing new viewpoints of the object.

. We segment the object of interaction in each image of
the trajectory and erase the object.

- We find a new goal/object position using the end posi-
tion of the robot.

« We calculate the matrix of the camera(s) relative to the
new position of the object.

. We render the object at a new position and blend the
outputs of the novel view synthesis model into the new
trajectory.

A. Creating an Object Level Model

Creating an NeRF model for an object is a widely used
practice in robotics. This can be done by using a robot
gripper arm to scan an object or a drone camera flying around
one. For our project, we randomly selected about 100 pictures
from various viewpoints as training data for our novel-view-
synthesis model. While there are many different novel-view-
synthesis models, we chose to use plenoxel because of its
ability to render at high speed with good resolution. Since
our policy is learning online, having a model that can render
in real time is crucial. Moreover, plenoxel also synthesizes
accurate depth maps which can be useful for modifying rgbd
and depth map based policies.

B. Segment and Removing The Original Object

Like previous works, we assume access to the pixel level
segmentation of the original object in a trajectory. If such
segmentation is not available, there is a rich set of image and
video segmentors that are capable of segmenting an object

in a dataset of images. For the extent of this work, we will
use Pybullet and Mujoco’s built-in segmentation masks that
come with their respective renderers.

After the mask is obtained, we erase the original object.
There are multiple off-the-shelf inpainters capable of erasing
an object that previous methods have used. For the sake of
simplicity, we use a reference image of the scene and then
replace the pixels in the mask with the background image.
This process can also be done for depth masks.

C. Calculate Camera To Object Matrix

For a trajectory / subtrajectory that we want to image
edit, we calculate the new desired position of the object.
Let the new position and orientation of the object relative
to the world be described by the transformation matrix
T q- Thus,

object-to-worl

T =T}

object-to-camera camera-to-world Tobject—to—world

Note that this formulation is valid for both 3rd person
cameras and dynamic first person cameras. We show the
effectiveness of our method in both scenarios in our Results
section.

D. Blend Model Renderings With Original Image

We pass Typicct-to-camera 100 the novel view synthesis
model to produce a rendering of the object in the new
position, denoted I . 4oeq- W€ also obtain an object mask
for this newly rendered object, denoted M .pgereq- We blend
the rendered image the image with the object erased through
the following method:

I final = I, rendered O M, rendered +1 object_erased © (] -M rendered)

If the observation space include the depth images, we can
optionally blend the rendered depth image with the original
depth image in the same way.

Metaworld Reach Wall

Success Rate
— With Hindsighte =— Without Hindsight @

Success

0.8
0.6
0.4

0.2

0 100k 200k

Fig. 3.

Environment Steps_

300k 400k 500k

The success rate for the "Metaworld reach wall" task where a robot arm has to reach over a wall and onto a ball that is floating in mid-air.

Metaworld Reach

Success Rate

— With Hindsighte — Without Hindsight
1
s
2
4
S
08 &
0.6
0.4
0.2
0 Environment Steps
0 100k 200k 300k 400k 500k

Fig. 4. The success rate for the "Metaworld Reach" task where a robot arm has to reach towards a ball in the air.

Farama Push

Farama Push Success Rate
— With Hindsight — Without Hindsight

0.6

Success Rate

0.4

0.2

0 200k 400k

Fig. 5.

E. Adding New Trajectories

We generally found that turning about 30% of trajectories
into relabeled trajectories was the most effective in achieving
good results. We sample a new goal randomly from each
position of the trajectory. Additionally, we only sample goals
in the relevant goal space of the gym environment (ie if
the robot goes out of bounds where a goal can be, we do
not sample from those positions for the new goal of the
trajectory).

Environment Steps

600k 800k M

The success rate for the "Farama Push" task where a robot arm to push a puck to a target location.

V. EXPERIMENTS

A. Environments

We test our method on 4 different environments from
Metaworld [39], Farama [40], and Pybullet [41], as listed
below:

1. Drone Navigation

2. Metaworld Reach

3. Metaworld Reach Wall

4. Farama Push
In the "Drone Navigation" environment, a policy is meant
to navigate an aerial drone to go through an orange square
hoop. The camera is located behind the drone and follows

A

Fig. 6. Our 4 environments. From left to right, the first one is the Drone Navigation task, the second one is the Metaworld Reach task, the third one is
Metaworld Reach Wall task, the final one is Farama Push task. The difference between Metaworld Reach and Metaworld Reach Wall is the presence of a

brick wall in front of the robot.

the drone as it navigates through the hoop. We create this
environment by ourselves using Pybullet [41]. The action
space was 3 values for the x,y,z velocity of the drone, and
the observation space was a rgb image. We used a sparse
reward for this environment and an episode ended when the
drone either flew through the hoop for or the hoop left the
field of view of the camera. Refer to fig. 6 for more details.

In the "Metaworld Reach" and "Metaworld Reach Wall"
tasks, a Sawyer robot arm attempts to reach a static ball that
is positioned above the table that the robot arm is next to.
We change the reward to be a sparse signal with a tolerance
value of 0.025. In order to be more visible, we change the ball
to be about twice the size of the original ball and switched
the color from red to green to prevent it from blending in
with the red robot arm. To clarify, these modifications do not
change the dynamics of the environment, only the visuals.
Additionally, we change the 3rd person camera to be parallel
to the side of the table for a better view of the situation. For
both environments, we keep the original 3-dof action space
from Metaworld but change the observation space to be a
rgbd image. Refer to fig. 6 for more details.

In the "Farama Push" task, we use the original push task
from the original hindsight experience replay paper. Namely,
a Farama robot arm is tasked with pushing a cube on a table
into a red "target" circle. Again, we change the size of the
target object to be more visible to the camera. To clarify, this
does not change the dynamics of the environment, only the
visuals. We also we used first person camera that is attached
to the gripper and changed the position so that it could see
the entire table. We use the original sparse reward option
that comes from the Farama environment. Refer to fig. 6 for
more details.

B. Results

As seen in fig 3-5, adding our visual HER method to the
standard soft-actor critic policy [42] results in significantly
faster convergence of training and higher average success
rate. To summarize, our method had an average of 40%
higher success rate on the "Drone Nav" task, 80% higher
success rate on the "Metaworld Reach Wall Task", a 75%
higher success rate on the "Metaworld Reach" task, and a
43% higher success rate on the "Farama Push" task.

Lack of Reward Signal. We find that among trajectories
of the baseline (SAC without hindsight augmentation), the

Drone Nav. Success Rate

100
—— SAC + Ours

SAC
60
40
201
0.2 0.4 0.6 0.8 1.0

Trajectories le6

Fig. 7. As seen our method is quite resistant to catastrophic forgetting.
Even after running 1 million timesteps, our policy still recovers from the
temporary drop in success rate.

policy often wanders in a single direction without heading
towards the target position / object. This behavior is due to
the sparsity of the reward in our environments. Often, the
network may never be lucky enough to have encountered a
successful trajectory, so the every reward in the replay buffer
is just a flat "0" without a reward gradient to improve itself
with. Namely in the "Metaworld Reach With Wall" task,
never once did the successful trajectory navigate across the
wall to the target. Thus, there was no successful trajectories
to learn from, leading to a completely unsuccessful policy.
Similar phenomena are present in the other environments
where there are not enough successful trajectories for the
baseline policy to infer effective.

Catastrophic Forgetting. Catastrophic forgetting is a phe-
nomenon in reinforcement learning where a policy appears
to have failed to achieve a task that it once was capable
of achieving. This has been observed in many situations
[43]. As seen in the figures, visual hindsight experience
replay does not result in significant catastrophic forgetting.
We hypothesize that because our method samples subgoals
in each trajectory, we maintain a diverse set of goals for our
policy to train on. To test how resistant our method is to
catastrophic forgetting, we leave our policy running for 1M
timesteps and showcase our results in 7. Even though the

success rate dips periodically, the success rate still remains
very high and always recovers.

C. Image Editing Speed

As shown in table I, we see that introducing a NeRF
into the pipeline does not result in significant slowdown
in real world time to train the model. We see that the fps
drop from using our hindsight experience replay buffer is
almost negligible. Consistent with most visual reinforcement
learning works, we use an image resolution ranging from
84 by 84 to 200 by 200. The result of this low image
resolution is that our model can render hundreds of frames
per second because the render speed is inversely proportional
to the number of pixels ie. render_speed = O <ﬁ . The
majority of the time taken in training is actually from
the physics engine and training the reinforcement learning

network itself. All rendering and calculations were done on
a single RTX:A4000 GPU.

TABLE 1
FPS WHEN TRAINING (1)

Nav. Drone Reach Reach W/ Wall Push
With Hindsight 92 39 46 33
Without Hindsight 89 41 47 39

VI. CONCLUSION AND FUTURE WORK

In this work, we take inspiration from the concept of
hindsight reasoning. Learning from hindsight is a crucial step
in allowing robots to successful perform tasks and reason
about their surroundings. We extend the well-known idea
of hindsight experience replay, a method in reinforcement
learning that relabels the goals in a trajectory to create
synthetic successful trajectories. We show that this method
is still effective in the visual domain and can be used in
a variety of applications. Future work can extend to other
forms of novel view synthesis such as gaussian splatting.
Another direction is the use of generative models in place of
a novel view synthesis method.

REFERENCES

[1] M. Andrychowicz, D. Crow, A. Ray, J. Schneider, R. Fong,
P. Welinder, B. McGrew, J. Tobin, P. Abbeel, and
W. Zaremba, “Hindsight experience replay,” in Neural
Information Processing Systems, 2017. [Online]. Available:
https://api.semanticscholar.org/CorpusID:3532908

[2] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes as
neural radiance fields for view synthesis,” 2020. [Online].
Available: https://arxiv.org/abs/2003.08934

[3] P. Wang, Y. Liu, Z. Chen, L. Liu, Z. Liu, T. Komura,
C. Theobalt, and W. Wang, “F?-nerf: Fast neural radiance
field training with free camera trajectories,” 2023. [Online].
Available: https://arxiv.org/abs/2303.15951

[4] C. Reiser, S. Peng, Y. Liao, and A. Geiger, “Kilonerf:
Speeding up neural radiance fields with thousands of
tiny mlps,” 2021 I[EEE/CVF International Conference
on Computer Vision (ICCV), pp. 14315-14325, 2021.
[Online]. Available: https://api.semanticscholar.org/CorpusID:
232352619

(5]

(6]

(7]

(8]

(91

(10]

(11]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

P. Hedman, P. P. Srinivasan, B. Mildenhall, J. T. Barron,
and P. E. Debevec, “Baking neural radiance fields for
real-time view synthesis,” 2021 [EEE/CVF International
Conference on Computer Vision (ICCV), pp. 5855-5864,
2021. [Online]. Available: https://api.semanticscholar.org/
CorpusID:232379923

H. Lin, S. Peng, Z. Xu, Y. Yan, Q. Shuai, H. Bao, and X. Zhou,
“Efficient neural radiance fields for interactive free-viewpoint
video,” SIGGRAPH Asia 2022 Conference Papers, 2021.
[Online]. Available: https://api.semanticscholar.org/CorpusID:
254044754

J. Gu, A. Trevithick, K.-E. Lin, J. Susskind, C. Theobalt,
L. Liu, and R. Ramamoorthi, “Nerfdiff: Single-image
view synthesis with nerf-guided distillation from 3d-aware
diffusion,” 2023. [Online]. Available: https://arxiv.org/abs/
2302.10109

N. Pearl, T. Treibitz, and S. Korman, “Nan: Noise-
aware nerfs for burst-denoising,” 2022. [Online]. Available:
https://arxiv.org/abs/2204.04668

Y.-C. Guo, D. Kang, L. Bao, Y. He, and S.-H. Zhang,
“Nerfren: Neural radiance fields with reflections,” 2022.
[Online]. Available: https://arxiv.org/abs/2111.15234

K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman,
S. M. Seitz, and R. Martin-Brualla, “Nerfies: Deformable
neural radiance fields,” ICCV, 2021.

A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa,
“Plenoctrees for real-time rendering of neural radiance fields,”
2021 IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 5732-5741, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:232352425

A. Yu, S. Fridovich-Keil, M. Tancik, Q. Chen, B. Recht,
and A. Kanazawa, “Plenoxels: Radiance fields without neural
networks,” 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 5491-5500, 2021.
[Online]. Available: https://api.semanticscholar.org/CorpusID:
245006364

B. Kerbl, G. Kopanas, T. Leimkiihler, and G. Drettakis,
“3d gaussian splatting for real-time radiance field rendering,”
2023. [Online]. Available: https://arxiv.org/abs/2308.04079

J. Luiten, G. Kopanas, B. Leibe, and D. Ramanan, “Dynamic
3d gaussians: Tracking by persistent dynamic view synthesis,”
in 3DV, 2024.

A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland,
L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y.
Lo, P. Dollar, and R. Girshick, “Segment anything,” 2023.
[Online]. Available: https://arxiv.org/abs/2304.02643

M. Ye, M. Danelljan, F. Yu, and L. Ke, “Gaussian grouping:
Segment and edit anything in 3d scenes,” in European
Conference on Computer Vision, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:265551523

N. Mishra, M. Sieb, P. Abbeel, and X. Chen, “Closing the
visual sim-to-real gap with object-composable nerfs,” 2024.
[Online]. Available: https://arxiv.org/abs/2403.04114

A. Byravan, J. Humplik, L. Hasenclever, A. Brussee, F. Nori,
T. Haarnoja, B. Moran, S. Bohez, F. Sadeghi, B. Vujatovic,
and N. Heess, “Nerf2real: Sim2real transfer of vision-guided
bipedal motion skills using neural radiance fields,” 2022.
[Online]. Available: https://arxiv.org/abs/2210.04932

M. N. Qureshi, S. Garg, F. Yandun, D. Held, G. Kantor,
and A. Silwal, “Splatsim: Zero-shot sim2real transfer of
rgb manipulation policies using gaussian splatting,” 2024.
[Online]. Available: https://arxiv.org/abs/2409.10161

Q. Dai, Y. Zhu, Y. Geng, C. Ruan, J. Zhang, and
H. Wang, “Graspnerf: Multiview-based 6-dof grasp detection
for transparent and specular objects using generalizable nerf,”
2023. [Online]. Available: https://arxiv.org/abs/2210.06575

J. Kerr, L. Fu, H. Huang, Y. Avigal, M. Tancik, J. Ichnowski,
A. Kanazawa, and K. Goldberg, “Evo-nerf: Evolving nerf

https://api.semanticscholar.org/CorpusID:3532908
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2303.15951
https://api.semanticscholar.org/CorpusID:232352619
https://api.semanticscholar.org/CorpusID:232352619
https://api.semanticscholar.org/CorpusID:232379923
https://api.semanticscholar.org/CorpusID:232379923
https://api.semanticscholar.org/CorpusID:254044754
https://api.semanticscholar.org/CorpusID:254044754
https://arxiv.org/abs/2302.10109
https://arxiv.org/abs/2302.10109
https://arxiv.org/abs/2204.04668
https://arxiv.org/abs/2111.15234
https://api.semanticscholar.org/CorpusID:232352425
https://api.semanticscholar.org/CorpusID:245006364
https://api.semanticscholar.org/CorpusID:245006364
https://arxiv.org/abs/2308.04079
https://arxiv.org/abs/2304.02643
https://api.semanticscholar.org/CorpusID:265551523
https://arxiv.org/abs/2403.04114
https://arxiv.org/abs/2210.04932
https://arxiv.org/abs/2409.10161
https://arxiv.org/abs/2210.06575

[22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

[36]

(371

(38]

(39]

[40]

for sequential robot grasping of transparent objects,” in 6th
Annual Conference on Robot Learning, 2022.

E. Zhu, M. Levy, M. Gwilliam, and A. Shrivastava, “Nerf-aug:
Data augmentation for robotics with neural radiance fields,”
2025. [Online]. Available: https://arxiv.org/abs/2411.02482
A. Zhou, M. J. Kim, L. Wang, P. Florence, and C. Finn,
“Nerf in the palm of your hand: Corrective augmentation for
robotics via novel-view synthesis,” 2023. [Online]. Available:
https://arxiv.org/abs/2301.08556

M. Bortolon, T. Tsesmelis, S. James, F. Poiesi, and A. D.
Bue, “6dgs: 6d pose estimation from a single image and
a 3d gaussian splatting model,” 2024. [Online]. Available:
https://arxiv.org/abs/2407.15484

——, “Iffnerf: Initialisation free and fast 6dof pose estimation
from a single image and a nerf model,” 2024. [Online].
Available: https://arxiv.org/abs/2403.12682

L. Yen-Chen, P. Florence, J. T. Barron, A. Rodriguez, P. Isola,
and T.-Y. Lin, “iNeRF: Inverting neural radiance fields for
pose estimation,” arxiv arXiv:2012.05877, 2020.

A. Rashid, S. Sharma, C. M. Kim, J. Kerr, L. Chen,
A. Kanazawa, and K. Goldberg, “Language embedded
radiance fields for zero-shot task-oriented grasping,” 2023.
[Online]. Available: https://arxiv.org/abs/2309.07970

Y. Ze, G. Yan, Y-H. Wu, A. Macaluso, Y. Ge, J. Ye,
N. Hansen, L. E. Li, and X. Wang, “Gnfactor: Multi-task
real robot learning with generalizable neural feature fields,”
2024. [Online]. Available: https://arxiv.org/abs/2308.16891
N. (Mahi)Shafiullah, C. Paxton, L. Pinto, S. Chintala, and
A. Szlam, “Clip-fields: Weakly supervised semantic fields
for robotic memory,” in Robotics: Science and Systems XIX,
ser. RSS2023. Robotics: Science and Systems Foundation,
July 2023. [Online]. Available: http://dx.doi.org/10.15607/
RSS.2023.XIX.074

C.-M. Chung, Y.-C. Tseng, Y.-C. Hsu, X.-Q. Shi, Y.-H.
Hua, J.-F. Yeh, W.-C. Chen, Y.-T. Chen, and W. H. Hsu,
“Orbeez-slam: A real-time monocular visual slam with
orb features and nerf-realized mapping,” 2023. [Online].
Available: https://arxiv.org/abs/2209.13274

A. Rosinol, J. J. Leonard, and L. Carlone, “Nerf-slam:
Real-time dense monocular slam with neural radiance fields,”
2022. [Online]. Available: https://arxiv.org/abs/2210.13641
T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized
experience replay,” 2016. [Online]. Available: https:/arxiv.
org/abs/1511.05952

R. Yang, M. Fang, L. Han, Y. Du, F. Luo, and X. Li, “Mbher:
Model-based hindsight experience replay,” 2021. [Online].
Available: https://arxiv.org/abs/2107.00306

B. Eysenbach, R. Salakhutdinov, and S. Levine, “Search on the
replay buffer: Bridging planning and reinforcement learning,”
2019. [Online]. Available: https://arxiv.org/abs/1906.05253
C. Lu, P. J. Ball, Y. W. Teh, and J. Parker-Holder,
“Synthetic experience replay,” 2023. [Online]. Available:
https://arxiv.org/abs/2303.06614

R. Wang, K. Frans, P. Abbeel, S. Levine, and A. A. Efros,
“Prioritized generative replay,” 2024. [Online]. Available:
https://arxiv.org/abs/2410.18082

L. Schramm, Y. Deng, E. Granados, and A. Boularias,
“Usher: Unbiased sampling for hindsight experience replay,”
2022. [Online]. Available: https://arxiv.org/abs/2207.01115
A. C. Li, L. Pinto, and P. Abbeel, “Generalized hindsight
for reinforcement learning,” 2020. [Online]. Available:
https://arxiv.org/abs/2002.11708

T. Yu, D. Quillen, Z. He, R. Julian, A. Narayan, H. Shively,
A. Bellathur, K. Hausman, C. Finn, and S. Levine, “Meta-
world: A benchmark and evaluation for multi-task and
meta reinforcement learning,” 2021. [Online]. Available:
https://arxiv.org/abs/1910.10897

M. Towers, A. Kwiatkowski, J. Terry, J. U. Balis, G. D.

[41]

(42]

[43]

Cola, T. Deleu, M. Gouldo, A. Kallinteris, M. Krimmel,
A. KG, R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai,
H. Tan, and O. G. Younis, “Gymnasium: A standard interface
for reinforcement learning environments,” 2024. [Online].
Available: https://arxiv.org/abs/2407.17032

B. Ellenberger, “Pybullet gymperium,” https://github.com/
benelot/pybullet-gym, 2018-2019.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft
actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor,” 2018. [Online]. Available:
https://arxiv.org/abs/1801.01290

M. B. Hafez, T. Immisch, T. Weber, and S. Wermter,
“Map-based experience replay: a memory-efficient solution to
catastrophic forgetting in reinforcement learning,” Frontiers
in Neurorobotics, vol. 17, June 2023. [Online]. Available:
http://dx.doi.org/10.3389/fnbot.2023.1127642

https://arxiv.org/abs/2411.02482
https://arxiv.org/abs/2301.08556
https://arxiv.org/abs/2407.15484
https://arxiv.org/abs/2403.12682
https://arxiv.org/abs/2309.07970
https://arxiv.org/abs/2308.16891
http://dx.doi.org/10.15607/RSS.2023.XIX.074
http://dx.doi.org/10.15607/RSS.2023.XIX.074
https://arxiv.org/abs/2209.13274
https://arxiv.org/abs/2210.13641
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/2107.00306
https://arxiv.org/abs/1906.05253
https://arxiv.org/abs/2303.06614
https://arxiv.org/abs/2410.18082
https://arxiv.org/abs/2207.01115
https://arxiv.org/abs/2002.11708
https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/2407.17032
https://github.com/benelot/pybullet-gym
https://github.com/benelot/pybullet-gym
https://arxiv.org/abs/1801.01290
http://dx.doi.org/10.3389/fnbot.2023.1127642

	Introduction
	Related Works
	Novel View Synthesis
	Novel View Synthesis in Robotics
	Replay Buffers and Hindsight Experience

	Preliminaries
	Our Approach
	Creating an Object Level Model
	Segment and Removing The Original Object
	Calculate Camera To Object Matrix
	Blend Model Renderings With Original Image
	Adding New Trajectories

	Experiments
	Environments
	Results
	Image Editing Speed

	Conclusion And Future Work

